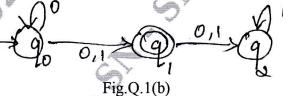
15CS54

Fifth Semester B.E. Degree Examination, Dec.2023/Jan.2024 Automata Theory and Computability

Time: 3 hrs.


Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Write DFA
 - i) To accept strings of 0's, 1's and 2's beginning with a 0 followed by odd number of 1's and ending with a 2.
 - ii) $L = \{W/W \text{ has odd number of 1's and is followed by even number of 0's}$ (08 Marks)
 - b. Convert the following NFA into an equivalent DFA.

(08 Marks)

OR

- 2 a. Obtain an NFA to accept the following language:
 - i) $L = \{W/W \in abab^n \text{ or } aba^n \text{ where } n >= 0\}$
 - ii) abc, abcd, aacd over assume $\Sigma = \{a, b, c, d\}$.

(06 Marks)

b. Minimize the DFA

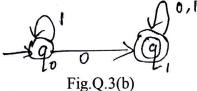
<i>a</i>	a	b
$\rightarrow q_0$	q_1	q ₃
qı	q_2	q ₄
q_2	q_1	q ₄
q_3	q_2	q_4
*q4	q ₄	q_4

(08 Marks)

c. Describe the finite state machine with block diagram.

(02 Marks)

Module-2


- 3 a. Give regular expression for
 - i) $L = \{a^n b^m c^p \text{ where } n < = 4 \text{ m} > = 2 \text{ p} < = 2\}$

(06 Marks)

- ii) $L = \{0^m 1^m 2^n | m > = 1 \text{ and } n > = 0\}$
- iii) $L = \{a^{2n} b^{2m}, m, n > = 0\}.$

(06 Marks)

b. Obtain regular expression by Kleen's theorem

Show that if L is regular, so is L^R.

(04 Marks)

OR

Convert the following regular expression to NFA with t – transition

 $(0+1)^*(01+11)(0+1)^*$

(06 Marks)

Define ∈-closure. Find ∈-closer of each state.

ð	t	a	ъ
→p	{r} 🐧	{q}	{p, r}
q	φ 🧠	{p}	ф
*r	{p, q}	{r}	{p}

Convert above automata to DFA

(06 Marks)

c. Prove that $L = \{a^n b^n | n \ge 0\}$ is not regular.

(04 Marks)

Module-3

Begins with grammar 5

 $S \rightarrow As B \in$

 $A \rightarrow a As \mid a$

 $B \rightarrow sbs \mid A \mid bb$

- Eliminate \in production
- ii) Eliminate any unit production in resulting grammar
- Eliminate any useless production in resulting grammar iii)
- Put the resulting grammar in Chomsky normal form.

b. Explain ambiguous grammar. Consider the grammar write LMD, RMD for string aabbab. Check given grammar is ambiguous or not

 $S \rightarrow aB \mid bA$

 $A \rightarrow aS \mid bAA \mid a \mid \in$

 $B \rightarrow bS \mid aBB \mid b \mid \in$

(06 Marks)

(08 Marks)

c. Obtain context free grammar for following languages:

 $L = \{a^n b^{n+2} | n > = 0\}$

ii)
$$L = \left\{ a^n b^m c^k \right\} n + 2m = k \text{ for } n, m \ge 0$$

(02 Marks)

- Construct PDA for the language $L = \{WCW^R | W \in \{a, b, c\}^*\}$. Give transition diagram and instantaneous description. Is the language deterministic or not? (10 Marks)
 - b. Convert the PDA to CFG

$$\delta(q_0, a, Z) = (q_0, AZ)$$

$$\delta(q_0, b, A) = (q_0, AA)$$

$$\delta(q_0, a, A) = (q, \epsilon)$$

(06 Marks)

- 7 Show that $L = \{ a^n b^n c^n | n > = 0 \}$ is not context free language (CFL). (08 Marks)
 - Prove that if L is CFL and R is a regular language, the $L \cap R$ is a context free language.

(08 Marks)

OR

Design a turning machine to recognize following language $L = \{0^n 1^n 2^n | n > = 1\}$ and explain 8 its transition diagram and give its instantaneous description for string 001122. (10 Marks)

b. Explain with diagram. Working of multi-tape turning machine.

(06 Marks)

Module

Write a note on:

Universal turning machine i)

Post correspondence problem.

(10 Marks)

b. Prove that if L is recursive language L is also recursive language

(06 Marks)

OR

Write short notes on: 10

Church turning thesis

Decidability, undecidability languages.

(10 Marks)

Explain briefly halting problem of turning machine b.

(06 Marks)